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Steady Viscous Flow in a Triangular Cavity
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Steady recirculating viscous flow inside an equilateral wriangular
cavity is generated by translating one side, The Navier-Stokes equa-
tions are solved numerically using finite differences on a transformed
geometry. Alternative numerical approaches, and associated numerical
difficulties, are also discussed. The results show a primary eddy and a
series of secondary eddies at the stagnant corner. For high Reynolds
numbers the interior of the primary eddy has constant vorticity, but its
value cannot be predicted by the mean-squared law. © 1994 Academic
Press. Inc.

1. INTRODUCTION

Steady recirculating flow is a basic phenomenon in fluid
mechanics. Such flows occur in the near wake of moving
bluff bodies, in channel flows with abrupt constrictions, or
inside cavities partially bounded by solid surfaces. The most
studied case in the literature is the cavity flow, a viscous
fluid enclosed by solid boundaries except for a translating
segment which drives the recirculation through shear stress.
This type of flow is important not only in its own right as a
basic physical model, but due to its simple geometry, it
serves also as a test problem for numerical algorithms.

Not surprisingly, the most widely used geometry for recir-
culating cavity flow in the literature is a two-dimensional
square enclosure with one side translating with uniform
velocity. Experimental observations of the streamlines were
recorded by Mills [1] and Pan and Acrivos [2] for
Reynolds number, defined as (translation velocity) x width/
(kinematic viscosity), up to order of 1000. Due to the
extreme nonlinearity of the Navier-Stokes equations, little
analytic work can be done. In the limit of infinite Reynolds
number, Batchelor [3] predicied analytically that the inte-
rior would aftain constant vorticity given by a mean
squared law. A variety of methods are used to solve the
problemn numerically—finite differences, false transients,

finite elements, spectral methods, multigrid methods, etc.
{c.g., Burggraf [4], Tuann and Olson [5], Ghia er af. [6],
Schreiber and Keller [7], Napolitano and Pascazio [8],
Shyy eral [97], lliev et ol [107]). It is generally agreed that
there is a dominant recirculation whose center is closer to
the moving wall. As the Reynolds number is increased, this
center first moves downstream, then moves towards the
middle of the square. There are two small counter recir-
culating eddies at the stagnant corners. The vorticity is most
intense near the moving boundary. For high Reynolds num-
bers the vorticity is confined to a boundary layer and the
interior vorticity is approximately constant.

However, there are also some differences in the numerical
results for the square cavity, The existence of a third small
counter rotating eddy upstream of the moving plate has not
been accepted by all numerical researchers, nor was it
observed experimentally. The numerical scheme of Benjamin
and Denny [ 11] showed enlargement of the small eddies as
the Reynolds number is increased, opposite to the conclusion
of others. There is also extreme difficulty in increasing the
Reynolds number to the extent that Batchelor’s theoretical
mean-square law [3] can be convincingly confirmed.
Finally Schreiber and Keller [12] showed that a computa-
tional mesh not sufficiently small would lead to spurious
solutions, implicating many earlier numerical calculations
may be erroneous.

Also relevant to our work, although less so than the
square cavity problem, is the large body of research on
unbounded flows over various geometries. For example,
Roache [ 137 discusses flow over a backstep at some length
and briefly mentions flow over a triangular notch as well.

The present paper studies numerically the triangular
cavity, which to our knowledge has not been done before.
This problem is important and interesting in its own right.
In fact, the triangular shape is at least as common in prac-
tice as the square, since a triangular groove, which is wider
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at the opening, is easier to mill than a square one. A tri-
angular groove is also more commeon than a square groove
on surfaces which have been roughened by scoring
Furthermore, the study of triangular grooves is extremely
important in the design of fluid flow across corrugated
boundaries. Such corrugations are required due to flexibility
[14] or the enhancement of heat transfer [15]. Qur aim is
to determine the structure of the recirculating flow and the
numerical difficulties peculiar to the triangular geometry.

2. FORMULATION

Let @ be the equilateral triangle with corners
(—/3a a), (/3a,a), and (0, —2a), and let 32 be the
boundary of 2. The two-dimensional steady Navier—Stokes
equations are

1
U+ v = -; Pt V(i + ), (1)
L L4 1 ’ I3 r
Wl +v'ol= —— plo+ (oL 4 Ul {2)
) o P )
uy + v, =0 (3)

Here o', v' are velocity components in the Cartesian x', p'
directions, g is the density, p’ is the pressure, and v is the
kinematic viscosity. The boundary conditions are no slip on
the sides of the triangle moving with a velocity of constant
magnitude U; on fixed sides the velocity is zero; and
velocities are bounded inside £2, We normalize all velocities
by U, the pressure by pU?, the lengths by g, and we drop the
primes. Define a stream function by

u=y .,

v=—y.. (4)

The governing equations in 2 become

Vi =R, Vi — 4§ V), (5)

where V? is the Laplacian operator and R is the Reynolds
number Ua/v. The boundary conditions become

=0 on all three sides of £, (6)
and
1 for the top side,
=) T= . 7
Wy —¢.)-T {0 for the other two sides, )

where T is a unit vector tangent to the boundary pointing in
the direction of motion (clockwise). Equation (7) deter-
mines the magnitude of the velocity vector (¢, —y,). The
direction of the velocity is already determined (up to the
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sign) by (6}, since ¥ =0 on 042 implies Viy = (i, ¢.) is
normal to a side; and thus the velocity, which is normal to
Vi, must be tangent to the boundary. For the equilateral
triangle € considered here, Eq. (7) can be written

y.=1, on the top side,
S3v.—,=0,  on the right side, (8)
I 4%, =0,  on the left side.

3. NUMERICAL METHODS

We apply a Newton-like iteration to Eq. (5). It 15 well
known that if Newton’s method converges to the root of a
nonlinear gquation, it does so rapidly. However, a good
initial guess is usually needed for convergence to occur. We
use a very simple initial guess, namely a cubic polynomial
constructed to be zero on 922. For the equilateral triangle we
choose
POx 1= — (= DBx+y+2(3x—y=2),  (9)
while for the right triangle discussed in Section 3.1 below we
use

' V(xp) = xp(x+ y=2./3). (10)

Rapid convergence is achieved for R=1 with sufficiently

fine grids. Solutions for higher Reynolds number are com-

puted by using as initial guess a solution for a slightly
smaller R.

A Newton-like linearization of the nonlinear operator in

Eq. (5) results in the linear fourth-order PDE to be solved
at each iteration,

V4lib - R(l,bi,” Vz!ib.\’ + Vzl)b,(:)l)by - l)b(:] VE!!IJ' _Vzw(\f)libr]
= ROV -y OV, (11)

where ¢) is the approximate solution from the previous
step. The linearization is derived by simply expanding the
nenlinear operator about some known function and by
keeping only the first two terms, See Ribbens er al. [16] for
a more detailed derivation of (11). At each step of the outer
iteration we must solve the linear problem defined by
Eqs. (6), (8), and (11). Note that lincarization precedes
discretization. One could also discretize first and then deal
with the resulting system of nonlinear equations, but the
two approaches are essentially equivalent.

3.1. Finite Differences on Original Problem

An efficient numerical technique for solving the related
driven square cavity problem is described by Schreiber and
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Keller [ 77. The technique employed in [7] is based on cen-
tral differences and a uniform rectangular grid, yielding a
discretization with second-order accuracy. The difference
formulas used to approximate the derivative terms in both
the PDE and the boundary conditions are centered. A
13-point stencil 1s required for the fourth-order derivatives.
In order to impose the PDE at grid points just inside the
region, “fictitious™ grid points just exterior to the boundary
are required, but the unknown iy values at these exterior
grid points are determined by imposing the normal
derivative boundary condition at nearby boundary grid
points. The technique in [7] also includes continuation in
the Reynolds number, a special sparse direct factorization
scheme for the resulting linear systems, and Richardson
extrapolation for improved accuracy.

We considered modifying the approach of Schreiber and
Keller for the triangle problem. Unfortunately, the equi-
lateral triangle presents considerable difficuities under such
an approach. Figure 1 shows a typical case. As in Ref. [7],
we introduce grid points just external to the region. Each
external point above the top edge is eliminated by impeosing
the derivative boundary condition (8) at the boundary grid
point directly beneath it. The unknown value at an external
grid point along the left or right side is determined by
imposing the derivative boundary condition at the
boundary grid point immediately above that point.
Centered formulas are used for the derivatives in these
boundary conditions for all but two points. Note that no
external points are defined just above or below the upper
left and right corners. The reason is that introducing such
points would immediately lead to a singular system, since
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FIG. 1. Equations and unknowns for the equilateral trangle £2.
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there is only one nearby boundary point {the corner itselfl)
at which to enforce boundary conditions, but we would
have two new fictitious points. Furthermore, the derivative
boundary conditions are not well defined at the corners, so
imposing them in an arbitrary direction seems dangerous.
Similarly, we do not have an external grid point beneath the
bottom corner because the derivative boundary condition is
not defined at the corner. The immediate result of this
special treatment near the corners is that we must use non-
symmetric stencils for the x derivatives at the boundary grid
points nearest the two upper corners, and we must use non-
symmetric 18-point stencils for the PDE at the interior
points nearest all three corners. For the remaining interior
grid points the standard 13-point finite difference stencil
suffices.

Unfortunately, our relatively straightforward generaliza-
tion of the technique of Schreiber and Keller resulted in
linear systems which are so ill conditioned that accurate
numerical solutions are virtually impossible. In fact, for
moderately fine grids (e.g., 49 vertical grid lines and 25
horizontal grid lines) the systems are numerically singular,
with condition numbers in excess of 10'. The problem is
related to the special treatment required in the corners
and to the overlapping stencils needed for the derivative
boundary equations along the left and right sides. On a test
problem, if we assume the external solution values are
known, so that neither the one-sided stencils nor the
derivative boundary equations are needed, the linear
systems become quite well conditioned (e.g., 10° for the case
mentioned above). We did not pursue further the causes of
the ili conditioning or seek remedies, as the approach
described in the next section proved successful. However, it
is interesting to note the significant problems that arise in
modifying the straightforward difference method of
Schreiber and Keller for the triangle.

3.2. Other Approaches

In a previous paper [167 we described a numerical
technique for solving the related problem of flow induced in
an elliptic region by the boundary moving at constant
velocity. In that work our numerical approach was based on
collocation with Hermite cubic basis functions, and we
defined the problem as a coupled system of two second-
order equations in two unknowns (stream function and vor-
ticity). This strategy proved quite successful and yielded
accurate solutions for Reynolds number up to 1000 and for
ellipses with aspect ratio up to five.

An analogous strategy for the present problem is not suc-
cessful, however. As in the finite difference method described
above, special problems near the corners lead to nearly
singular linear systems and, in fact, to exactly singular
systems if the collocation points are not chosen carefully.
Our experience is that this extreme ill conditioning causes



176

inaccuracies in the approximate solution and prevents the
Newton iteration from converging for all but the smailest
Reynolds numbers. Neither collocation nor centered finite
differences applied to the system of two second-order equa-
tions was successful. A further problem with the stream
function-vorticity formulation is that the correct boundary
conditions for the vorticity are not clear in this case, since
both boundary conditions are in terms of the stream
function.

Although our primary emphasis here is on considering
various finite difference approaches, in addition to the
collocation method mentioned above, we also considered
other finite element methods. The triangular geometry
suggests that triangular finite elements are an obvious
choice, for example. However, high order elements are
needed in order to discretize the fourth-order differential
operator, and hence the programming ecffort is still
substantial.

3.3, Finite Differences on a Transformed Problem

Returning to a direct finite difference treatment of the
fourth-order problem, a more successful numerical treat-
ment is possible. The key step is to transform the problem
to an equivalent problem posed on a right triangle. In
particular, we introduced a change of variables

E=x+(p+20/3  n=201-p)J/3

so that our computational region is a right triangle & with
corners (0, 0), (2 \/5, 0), and (0, 2 \/5). The transformed
PDE operator in &, 5 is a very general one indeed, since the
chain ruie produces terms of up to total (derivative) degree
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FIG. 2. Equations and unknowns for the right triangle €3,
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four with coefficients depending on the coeflicients of the
original problem and on the transformation. Deriving the
transformed coefficients and new difference formulas for all
of these derivative terms by hand would be extremely
tedious. We found the process reasonably straightforward,
however, using the symbolic computational facilities of
Mathematica [17].

The most important benefit of transforming the problem
to a right triangle is that the transformed derivative bound-
ary conditions are still simply normal derivative conditions
on ¥, the unknown in £ (ic., a Neumann condition). This
is precisely true only for an equilateral triangle transformed
to an isosceles right triangle. The original problem posed on
a scalene triangle might be unavoidably ill condi-
tioned—this remains a topic for future work. This Neumann
boundary condition is extremely important for the numeri-
cal scheme because it allows us to use centered difference
formuias to approximate these derivative conditions and
because these formulas do not overlap (as they do on the
equilateral triangle). As can be seen in Fig. 2, we again
introduce unknowns exterior to the region and eliminate
them by hand by imposing the derivative boundary condi-
tion at the nearest point on the boundary. Note that along
the hypotenuse of the triangle we impose the derivative
boundary condition at the midpoint of a grid square rather
than on a grid point. There are several possibilities for
second-order accurate finite difference stencils in the interior
of the region. As can be seen in Fig. 3, the stencil we use is
skewed so that it “fits” the geometry. Thus, we are able to
use the same difference equations to approximate the PDE
at all interior points, including those closest to the corners.
This is another important benefit of the transformed
problem approach. Figure 3 shows the stencil for the PDE
applied at the interior grid point closest to the top corner.
Other second-order accurate stencils require an extra
diagonal of fictitious points along the hypotenuse. The coef-

biharmonic stencil for right iriangie

COe®®O

FIG. 3. Stencil for approximating derivatives of up to degree four on
the right triangle Q. The difference equations for the center point involve
unknowns at each of the solid circles.
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ficients for the various finite difference approximations
based on this skewed stencil are given in the Appendix.

The results reported in the next section are based on a
200 x 200 square mesh. The resulting linear system has
19,701 equations and unknowns. We solve the discrete
problem using band Gauss climination. We obtain solutions
for Reynolds numbers 1, 10, 50, 100, 150, 200, 250, 300, 350,
400, 450, 500. Higher Reynolds numbers would require a
finer mesh, which in turn would require either more com-
puter memory or a different linear equation solver. Alter-
natively, an upwind difference scheme might allow selutions
for higher Reynolds number, since the cell Reynolds number
for our scheme is as high as 15 (values larger than two can
lead to stability problems in the time dependent case). In
order to have confidence in our solutions, for several
Reynolds numbers we also did solutions using coarser
meshes (e.g., 50x 50 and 100 x 100). Comparing these
results with the finest mesh shows the expected convergence
with respect to the mesh size. Care must be taken to avoid
spurious solutions for the highest Reynclds numbers,
however, Schreiber and Keller [127 show that for a given
mesh size, there is a point where increasing the Reynolds
number further can lead to spurious solutions. We give an
example of such a spurious solution below.

4. RESULTS

Figure 4 shows the streamline patterns as the Reynolds
number is increased. The top boundary is translating to the
right, driving the recirculation eddy through viscous shear.
For R < 1 the streamlines are almost symmetric with respect
to the y axis. The clockwise primary eddy is about  from the
bottom vertex and moves downstream (to the right) as R is
increased. There are several secondary eddies alternating in
sign and rapidly decreasing in strength towards the stagnant
corner. According to Moffsatt’s analysis, the size ratio of the
eddies for a 60° stagnant corner is about 4.8, which is
consistent with our resuits.

Figure 5 shows the corresponding vorticity distribution,
defined as { = V3. In general vorticity is large and positive
near the top, and at large Reynolds numbers, it is convected
to the right side. Finally at R =500, the vorticity changes
become more restricted to the boundaries. Figure 6 shows
the vorticity distributions for R = 500 along two different
directions across the cavity. It is seen that the “interior” of
the primary eddy has almost constant vorticity. We define
the center (x., y.) of the primary eddy as the [ocation of
maximum ¥ value in the cavity. Table I shows that as R
increases te 500, the location of the center (x., y,.), its
stream function value y,, and its vorticity {, all seem to
have converged. Similar to the case of the square, the
primary eddy center first moves toward the right side, then
towards the center of the triangle. Now the fact that R =500
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TABLEI

Properties of the Center of the Primary Eddy, Located at (x_, y.)
with Stream Function Value . and Vorticity {,

R Xe e 'wr Er
1 0.016% 0.460 0.233 1.363
50 0.346 0.445 0.237 1.464
100 0.329 0.355 0.247 1.373
200 0.208 0.280 0.260 1272
350 0.173 0.265 0268 1.232
500 0.173 0.265 0.269 1.230

does not seem to be large is due to our definition of R If a
side of the triangular cavity is used as the length scale, the
actual Reynolds number would be 2 ﬁ—fold, S0 our
R = 500 is equivalent to a conventional Reynolds number of
1732,

5. DISCUSSION AND CONCLUSIONS

Physically the flow in a triangular cavity is similar to the
flow in a square cavity. There is, however, only a single
stagnant corner where we find a series of small eddies, This
phenomena is also shown experimentally for a triangular
cavity with a small opening.angle (Van Dyke [18]).

Now let us compute the interior constant vorticity pre-
dicted by Batchelor [3]. The analytic solution for inviscid
rotational flow with constant vorticity inside an equilateral
triangle 15 given by Eq. (3). Using the mean-square law on
the boundary velocity we find the interior vorticity for large
Ris \/6/3 = 1.054. This is much fower than our numerical
value of 1.250. We conclude that Batchelor’s theory does
not apply to the triangular cavity. There are several reasons.
First, the mean-square law assumes a zero pressure gradient
along the boundary. The inviscid flow of Eq. (9), however,
shows that pressure rises at the three stagnant corners.
Second, the assumption of a thin boundary layer enclosing
the primary eddy is violated for the triangle. Figure 5e
shows seccondary eddies occupying large areas. As Figs. Sa—e
show, these secondary eddies seem to become larger as Ris
increased (also concluded by Benjamin and Denny [11]).
Thus the mean-square law is found to be approximately
valid for circular or elliptic boundaries (Ribbens eral
[16]), may be valid for the square cavity if corner eddies are
small, but is not valid for the triangular cavity. An interest-
ing experiment for future work would be to test the mean-
square law for trapezoidal shaped cavities {of which the
square and triangle are limiting cases), with both one side
moving and all sides moving. This problem has been studied
for one particular trapezoid by Darr and Vanka [19].

Another difference between the triangular cavity and the
square cavity is in the numerical method. Due to the
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FIG. 5. Vorticity distribution for R =1 (a), R =50 (b}, R= 100 (c), K= 200 {d), and R =500 (e).
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FIG. 6. Vorticity values for R =500 along y =0.265 (left) and along x =0.173 (right).

geometry, especially at the corners, problems arise if — 0 0 -1
standard algorithms are applied directly. We finally trans-
. . . 60 0 1 0
formed the geometry to an isosceles right triangle and suc- 1
cessfully applied a finite difference method, although new v, 3 00 0 0 O
formulas had to be derived for the asymmetric stencil in 0O-1 0 0
Fig. 3. Care must be taken to use a grid size large enough 1o | 0 0
be efficient computationally and small enough such that -
spurious solutions ar¢ not obtained. An example of a
spurious solution is shown in Fig, 7. — 0 0 =
' | 0 0 0 0
APPENDIX v [0 12 1 o,
The (i, /) entry in the templates below is the coefficient a; 0 0 0 O
of ¥(x+ih, y+ jh) in the finite difference approximation 0 0
S - 2%y P(x+ih, y+ jh)to a particular partial derivative - =
of ¥at (x, y):
0 0 B 0 0 T
: 0 0 0 0O | 0 -1 0 1
— — 0 t ¥..—|0 0 0 0|,
¥, o 0 —1 0| gy 0
60 0 0 1 0-1 0
6 0 | 0 0 ]

FIG. 7. A spurious solution (left) and the correct solution (right) for R =275,
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